Table of Contents
1. Introduction ... 3
2. Mission Statement.. 3
3. ABET Criteria ... 3
 3.1 Electrical Engineering Program .. 3
 3.1.1 EE Learning Outcomes ... 3
 3.1.2 EE Program Educational Objectives .. 4
 3.2 Computer Engineering Program .. 4
 3.2.1 CE Learning Outcomes .. 4
 3.2.2 CE Program Educational Objectives .. 5
4. Faculty Advising.. 5
5. Degree Requirements ... 6
 5.1 Graduation Requirements ... 6
 5.1.1 University Graduation Requirements ... 6
 5.1.2 Engineering Graduation Requirements .. 7
 5.2 Mathematics Requirements .. 7
 5.3 Physics Requirements ... 8
 5.4 Thematic Requirements ... 8
 5.4.1 Physics .. 9
 5.4.2 Chemistry ... 9
 5.4.3 Biology .. 9
 5.4.4 Environmental Science .. 10
 5.5 B.S. EE Specific Requirements ... 11
 5.5.1 Approved ECE Electives for Electrical Engineering Majors .. 11
 5.6 B.S. CE Specific Requirements .. 12
 5.6.1 Approved ECE/CS Electives for Computer Engineering Majors 12
6. Academic and Professional Ethics .. 13
7. Sample Programs .. 13
1. Introduction
The University of Massachusetts Boston Engineering Department offers two Bachelor’s degree programs: one in Electrical Engineering (EE) and one in Computer Engineering (CE). Electrical and Computer Engineering (ECE) are closely related engineering disciplines concerned with a wide variety of topics in signals, systems and communications, electronics, photonics, optoelectronics, as well as design, analysis and applications of computers. They are most relevant to almost everything in our daily life, ranging from fancy toys to highly sophisticated electronics such as cell phones, computers, audio and video components. As such, ECE curricula are among the most demanding and stimulating to complete. Both EE and CE curricula provide a solid foundation in basic science and mathematics as well as the ability to focus on either EE or CE areas. They also require an in-depth study in an area outside of ECE for breadth in recognition of the multidisciplinary nature of the real-world problems our graduates will face.

2. Mission Statement
The faculty of the Department of Engineering at the University of Massachusetts Boston are committed to providing a rigorous educational experience that prepares students to pursue further study and to professionally and ethically practice engineering in a competitive global setting. The mission of the program is to provide stimulating and flexible curricula in fundamental and advanced topics in electrical and computer engineering, basic sciences, mathematics, and humanities, in an environment that fosters development of analytical, computational, and experimental skills and that involves students in design projects and research experiences; and to provide our engineering graduates with the tools, skills and competencies necessary to understand and apply today’s technologies and become leaders in developing and deploying tomorrow’s technologies.

3. ABET Criteria
Both the EE and CE Bachelor of Science programs will seek accreditation from ABET (http://www.abet.org) at the earliest time possible. In compliance with ABET requirements, the faculty of the Electrical and Computer Engineering programs have established the following student learning outcomes and program educational objectives for EE and CE Bachelor of Science (B.S.) degree programs.

3.1 Electrical Engineering Program
3.1.1 EE Learning Outcomes
Our electrical engineering graduates must attain:

A. an ability to apply knowledge of mathematics, science, and engineering
B. an ability to design and conduct experiments, as well as to analyze and interpret data
C. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
D. an ability to function on multidisciplinary teams
E. an ability to identify, formulate, and solve engineering problems
F. an understanding of professional and ethical responsibility
G. an ability to communicate effectively
H. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
I. a recognition of the need for, and an ability to engage in life-long learning
J. a knowledge of contemporary issues
K. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

3.1.2 EE Program Educational Objectives
Our electrical engineering graduates will have:

1. Developed careers in engineering and other related fields that enhance the quality of life for all people through technical proficiency, innovative design and socially responsible development of products and systems.
2. Engaged in advanced study, if desired, in pursuit of research and academic professions that contribute to technological and scientific advancement and education.
3. Become leaders at their place of employment through leading edge knowledge of their field and keen understanding of team dynamics.

3.2 Computer Engineering Program
3.2.1 CE Learning Outcomes
Our computer engineering graduates must attain:

A. an ability to apply knowledge of mathematics, science, and engineering
B. an ability to design and conduct experiments, as well as to analyze and interpret data
C. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
D. an ability to function on multidisciplinary teams
E. an ability to identify, formulate, and solve engineering problems
F. an understanding of professional and ethical responsibility
G. an ability to communicate effectively
H. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
I. a recognition of the need for, and an ability to engage in life-long learning
J. a knowledge of contemporary issues
K. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

3.2.2 CE Program Educational Objectives
Our computer engineering graduates will have:

1. Developed careers in engineering and other related fields that enhance the quality of life for all people through technical proficiency, innovative design and socially responsible development of products and systems.
2. Engaged in advanced study, if desired, in pursuit of research and academic professions that contribute to technological and scientific advancement and education.
3. Become leaders at their place of employment through leading edge knowledge of their field and keen understanding of team dynamics.

4. Faculty Advising
The success of each student within the program will depend on effective faculty advising. Every undergraduate student in the Electrical and Computer Engineering programs will be assigned a faculty advisor. All incoming freshmen or transfer students will receive academic counseling with a faculty member. Together, they will develop a personalized degree plan and timeline for completion. The plan will be reviewed by the student and their advisor on a regular basis and revised as individual circumstances change. The path of study must consist of a set of courses that satisfy the program outcomes and objectives outlined above in the chosen engineering discipline and degree requirements. The sample programs and the program checklist used by the faculty advisors illustrate course selections that will help students meet the program objectives and outcomes.

The faculty advisor assists the student in developing an approved program, including assignment of credits to the proper categories and judging the appropriateness of area designators. However, it should be understood that satisfaction of degree requirements is ultimately the responsibility of the student. The student is expected to understand the degree requirements and engage in careful program planning with the faculty advisor. Students should also be familiar with the university graduation requirements.
Full-time students, under normal circumstances, are expected to complete their degree requirements in no more than four years or eight semesters, except in special circumstances such as pursuing a double major, a special program, or inability to attend full-time. Those who combine work with their study must have a plan to move through the curriculum in a timely manner. All students must take ownership of the academic plan. Developing and completing this plan has many benefits. First, it will help clarify the curricular requirements for our students. Second it will motivate students to set precise deadlines by which they can measure their progress. Satisfying these deadlines will help them retain and build confidence. Finally, a detailed plan of action can help students stay focused - resulting in better academic results and timely graduation.

Students may also receive advising from faculty advisors on other aspects of their academic career, such as admission to graduate and professional schools or career planning. Faculty advisors may be able to direct students to other advising and counseling resources that provide information on internship opportunities, and direct students to independent research and guided independent studies. Communicating with a faculty advisor is also an effective means for undergraduate students to provide valuable feedback on all aspects of their educational experiences to improve the undergraduate education for all students. The Electrical and Computer Engineering faculty make every effort to be available to their advisees, particularly during the scheduled fall and spring term advising periods. The student is required to meet with the faculty advisor at least once – and preferably more – each semester. It is the responsibility of the student to initiate these meetings with the advisor. It is important that students remain in close contact with their advisors and consult with them before making changes in their program. The faculty advisor must release advising holds on a student’s registration record before she/he can register for classes. This is typically done during the advising period of each semester when students can register for courses for the next semester. The advising hold will not be released until the advisee has reviewed her/his course plans with the advisor. The faculty advisor will also sign add/drop forms. Please note that unless prior arrangements have been made, no faculty member other than the student’s own advisor can sign the required forms.

5. Degree Requirements
5.1 Graduation Requirements
5.1.1 University Graduation Requirements

a) First-Year Seminar (4 credits) can be taken as a one-semester 4-credit course (course numbers in the 100s that end with the letter G) during freshman year or as two freshman seminar courses, *Intro-D 187S* Freshman seminar I (2 credits) and *Intro-D 188S* Freshman seminar II (2 credits). All students entering UMB with less than 30 credits are required to take this course.
b) **Intermediate Seminar** (3 credits) is taken during the sophomore year. All students entering UMB with less than 90 credits are required to take an intermediate seminar course, as defined by the UMB graduation requirements. Intermediate seminar courses have course numbers in the 200s that end with the letter G.

b) **Intermediate Seminar** (3 credits) is taken during the sophomore year. All students entering UMB with less than 90 credits are required to take an intermediate seminar course, as defined by the UMB graduation requirements. Intermediate seminar courses have course numbers in the 200s that end with the letter G.

c) Two courses in writing and composition: **ENGL 101** (3 credits) and **ENGL 102** (3 credits).

d) Five additional general education courses that satisfy the diversity requirement and some of the areas in social and behavioral sciences, arts and humanities, world languages and cultures.

e) Demonstrate writing proficiency by completing the **Writing Proficiency Requirement**. Students need to take the **Writing Proficiency Exam** (WPE) before or during their junior year after taking the Intermediate Seminar and when having between 60 and 75 credits.

For more information, please check the university website: http://www.umb.edu/academics/vpass/undergraduate_studies/general_education_requirements

5.1.2 Engineering Graduation Requirements

1. Students must maintain a **minimum 2.0 GPA** in all major related courses required for the Electrical or Computer Engineering major (Major GPA Computation: all courses including mathematics, physics, engineering, computer science, and thematic electives that are used to fulfill degree requirements, if a course is repeated, only the most recent course grade shall be used).

2. Students must receive **at least a C-** in all mathematics, physics, engineering, computer science, thematic elective courses that are used to fulfill degree requirements.

3. Students may take **one thematic elective course P/F**. All other major related courses must be graded.

4. To graduate with **Honors in Electrical or Computer Engineering**, students must achieve the following:
 i) 3.000 GPA overall.
 ii) 3.300 GPA in the major as calculated in 1.
 iii) Complete and present an honors thesis that the Engineering faculty deem worthy of Honors recognition.

5.2 Mathematics Requirements

All ECE majors must take these five mathematics courses from the Mathematics Department and the Engineering Department that include:

- **MATH 140** Calculus I (4 credits)
- **MATH 141** Calculus II (4 credits)
- **MATH 242** Multi-variable and vector calculus (4 credits)
- **MATH 260** Linear Algebra (3 credits)
- **ENGIN 211** Engineering Math (3 credits)
MATH 140, MATH 141 and MATH 242 are courses taught in sequence and must be completed in this order. Students may not repeat lower level courses after completion of a higher level course in a sequence, and doing so will result in a loss of credit. If a student has not met the minimum grade requirement for MATH 140 or MATH 141, they should be encouraged to repeat the course before moving forward in the sequence. Students who have entered the engineering program with substandard grades in these courses may audit these courses, and the department will keep an unofficial record of the student’s performance as reported by the instructor in the course.

In addition, Electrical Engineering majors must take MATH 310 Ordinary Differential Equations (3 credits) and Computer Engineering majors must take MATH 320L Applied Discrete Mathematics (3 credits). Mathematics courses lower than MATH 140 such as MATH 115 College Algebra or MATH 130 Pre-calculus courses do not count towards mathematics requirements.

Courses in this group may not be taken Pass/Fail, and C- or better grades are required of all these courses.

5.3 Physics Requirements
All ECE majors must take four Physics courses from the Physics Department:

- PHYSIC 113 Fundamental Physics I (4 credits)
- PHYSIC 181 Physics Lab I (2 credits)
- PHYSIC 114 Fundamental Physics II (4 credits)
- PHYSIC 182 Physics Lab II (2 credits).

Algebra-based College Physics I and II (PHYSIC 107 and 108) are not acceptable.

Courses in this group may not be taken Pass/Fail, and C- or better grades are required of all these courses.

5.4 Thematic Requirements
All ECE majors must take at least two courses in one area within the College of Science and Mathematics, but outside of ECE and Computer Science as thematic electives for breadth so they can learn the vocabulary of other disciplines. Both EE and CE curricula have the flexibility for up to four thematic courses. Thematic elective courses may be applied toward a double major. All thematic elective courses must be from a single discipline; courses from additional disciplines will not be applied toward the thematic elective requirement even if they are on the list of approved thematic electives. For example, if a student has taken thematic electives from the list below in both Physics and Biology, only courses in either Physics or Biology at the
discretion of the student but not both can be applied toward the thematic elective requirement.

5.4.1 Physics

<table>
<thead>
<tr>
<th>Course number</th>
<th>Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSIC 211</td>
<td>Introduction to Contemporary Physics</td>
<td>3</td>
<td>PHYSIC 114 or permission of instructor</td>
</tr>
<tr>
<td>PHYSIC 214</td>
<td>Thermodynamics</td>
<td>3</td>
<td>MATH 141 and PHYSIC 113 or permission of instructor</td>
</tr>
<tr>
<td>PHYSIC 312</td>
<td>Mechanics</td>
<td>3</td>
<td>PHYSIC 211 or permission of instructor; co-requisite: MATH 310</td>
</tr>
<tr>
<td>PHYSIC 350</td>
<td>Statistical Physics</td>
<td>3</td>
<td>Not currently offered</td>
</tr>
<tr>
<td>PHYSIC 421</td>
<td>Atomic Physics and Introduction to Quantum Mechanics</td>
<td>3</td>
<td>PHYSIC 312 or permission of instructor</td>
</tr>
</tbody>
</table>

5.4.2 Chemistry

<table>
<thead>
<tr>
<th>Course number</th>
<th>Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 115</td>
<td>Chemical Principles I Lecture</td>
<td>3</td>
<td>MATH 130 or placement into MATH 140; co-requisite CHEM 117</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>Chemical Principles I Laboratory</td>
<td>2</td>
<td>Co-requisite: CHEM 115</td>
</tr>
<tr>
<td>CHEM 116</td>
<td>Chemical Principles II Lecture</td>
<td>3</td>
<td>C- or better in CHEM 115, MATH 130; co-requisite CHEM 118</td>
</tr>
<tr>
<td>CHEM 118</td>
<td>Chemical Principles II Laboratory</td>
<td>2</td>
<td>Co-requisite: CHEM 116</td>
</tr>
<tr>
<td>CHEM 311</td>
<td>Analytical Chemistry</td>
<td>4</td>
<td>C- or better in CHEM 116; MATH 140 and PHYSIC 113</td>
</tr>
<tr>
<td>CHEM 312</td>
<td>Physical Chemistry</td>
<td>4</td>
<td>CHEM 311</td>
</tr>
</tbody>
</table>

*CHEM 115 and 117 must be taken together and are counted as one course, CHEM 116 and 118 must be taken together and are counted as one course.

5.4.3 Biology

<table>
<thead>
<tr>
<th>Course number</th>
<th>Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>General Biology I</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>BIOL 112</td>
<td>General Biology II</td>
<td>4</td>
<td>BIOL 111</td>
</tr>
<tr>
<td>BIOL 210 or BIOL 212, 3 credits, lecture only</td>
<td>Cell Biology</td>
<td>4</td>
<td>BIOL 112 and CHEM 115 and 117; co-requisite: MATH 13 or placement into MATH 140</td>
</tr>
<tr>
<td>BIOL 252 Or BIOL 254, 3 credits, lecture only</td>
<td>Genetics</td>
<td>4</td>
<td>BIOL 112 and CHEM 115 and 117; co-requisite: MATH 13 or placement into MATH 140</td>
</tr>
<tr>
<td>BIOL 290</td>
<td>Population Biology</td>
<td>3</td>
<td>MATH 13 or placement into MATH</td>
</tr>
<tr>
<td>Course number</td>
<td>Title</td>
<td>Credits</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>BIOL 316</td>
<td>Neurobiology</td>
<td>4</td>
<td>BIOL 212/201 and BIOL 252/254 or permission of instructor</td>
</tr>
</tbody>
</table>

5.4.4 Environmental Science

<table>
<thead>
<tr>
<th>Course number</th>
<th>Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVSCI 120</td>
<td>Introduction to Environmental, Earth and Ocean Sciences</td>
<td>3</td>
<td>None</td>
</tr>
<tr>
<td>ENVSCI 121</td>
<td>Introduction to Environmental, Earth and Ocean Sciences Lab</td>
<td>1</td>
<td>Co-requisite: ENVSCI 120</td>
</tr>
<tr>
<td>ENVSCI 122</td>
<td>Introduction to Environmental Policy & Management</td>
<td>3</td>
<td>None</td>
</tr>
<tr>
<td>ENVSCI 210</td>
<td>Earth’s Dynamic Systems</td>
<td>4</td>
<td>ENVSCI 120 and 121</td>
</tr>
<tr>
<td>ENVSCI 225</td>
<td>Weather and Climate</td>
<td>3</td>
<td>Pre-requisite: 30 credits</td>
</tr>
<tr>
<td>ENVSCI 226</td>
<td>Introduction to Oceanography</td>
<td>3</td>
<td>ENVSCI 120, 121, 122</td>
</tr>
<tr>
<td>ENVSCI 260</td>
<td>Global Environmental Change</td>
<td>3</td>
<td>ENVSCI 120, BIOL 111 or permission of instructor</td>
</tr>
<tr>
<td>ENVSCI 265</td>
<td>Computer Applications in Geography</td>
<td>3</td>
<td>Not currently offered</td>
</tr>
<tr>
<td>ENVSCI 266</td>
<td>Building and Editing a Geodatabase Using ArcGIS 9.3</td>
<td>3</td>
<td>Not currently offered</td>
</tr>
<tr>
<td>ENVSCI 281</td>
<td>Introduction to Geographic Information Systems</td>
<td>4</td>
<td>ENVSCI 120 or ENVSCI 261 or permission of instructor</td>
</tr>
</tbody>
</table>

Students are encouraged to seek advice from these departments for even more course options and seek approval from their advisor.

Students may take one thematic elective course P/F. For the rest of thematic electives, and C- or better grades are required.
5.5 B.S. EE Specific Requirements

The B. S. degree program in Electrical Engineering consists of a minimum of one hundred and twenty six (126) credits that include the university, mathematics, physics, thematic, and the following discipline specific requirements:

- One programming course: **CS 109 Computer Programming for Engineers (3 credits)**
 This course may **not** be taken **Pass/Fail**, and a C- or better grade is required.

The following engineering courses are required:

- **ENGIN 104** Intro to ECE (3 credits)
- **ENGIN 231** Circuit Analysis I (3 credits)
- **ENGIN 271** Circuits Lab I (1 credit)
- **ENGIN 232** Circuit Analysis II (3 credits)
- **ENGIN 272** Circuits Lab II (1 credit)
- **ENGIN 241** Digital Systems with Lab (4 credits)
- **ENGIN 365** Electronics I with Lab (4 credits)
- **ENGIN 366** Electronics II with Lab (4 credits)
- **ENGIN 321** Signals and Systems (3 credits)
- **ENGIN 322** Probability and Random Processes (3 credits)
- **ENGIN 331** Fields and Waves (3 credits)
- **ENGIN 491** Senior Design Project I (3 credits)
- **ENGIN 492** Senior Design Project II (3 credits),
 - At least four ECE elective courses.
 - Two additional elective courses for a minimum of six (6) combined credits. Each of these courses may be an elective in ECE or in the same chosen thematic area as the first two thematic electives. This flexibility is designed to give those students who wish to gain depth in a thematic area the opportunity to do so.

Courses in this group may **not** be taken **Pass/Fail**, and C- or better grades are required of all these courses.

5.5.1 Approved ECE Electives for Electrical Engineering Majors

The following ECE courses are approved as ECE electives for EE Majors:

- **ENGIN 332** Fields & Waves II (3 credits)
- **ENGIN 341** Advanced Digital Design (3 credits)
- **ENGIN 346** Microcontrollers (3 credits)
- **ENGIN 351** Fundamentals of Semiconductor Devices (3 credits)
- **ENGIN 451** Semiconductor Device Design, Simulation and Fabrication (3 credits)
- **ENGIN 471** R/F Microwave Circuits (3 credits)
The B. S. degree program in Computer Engineering consists of a minimum of one hundred and twenty seven (127) credits that include the university, mathematics, physics, computer science, thematic, and general education requirements.

The following Engineering and Computer Science courses are required:

- ENGIN 104 Intro to ECE (3 credits)
- CS 110 Intro to Computing (4 credits)
- CS 210 Intermediate Computing with Data Structures (4 credits)
- ENGIN 231 Circuit Analysis I (3 credits)
- ENGIN 271 Circuits Lab I (1 credit)
- CS 240 Programming in C (3 credits)
- ENGIN 232 Circuit Analysis II (3 credits)
- ENGIN 272 Circuits Lab II (1 credit)
- ENGIN 241 Digital Systems with Lab (4 credits)
- CS 310 Advanced Data Structures and Algorithms (3 credits)
- ENGIN 321 Signals and Systems (3 credits)
- ENGIN 322 Probability and Random Processes (3 credits)
- ENGIN 341 Advanced Digital Design (3 credits)
- ENGIN 346 Microcontrollers (3 credits)
- ENGIN 365 Electronics I with Lab (4 credits)
- ENGIN 446 Computer Architecture Design (3 credits)
- ENGIN 491 Senior Design Project I (3 credits)
- ENGIN 492 Senior Design Project II (3 credits),
- Two additional elective courses. Each of these courses may be an elective in ECE/CS or in the same chosen thematic area as the first two thematic electives. This flexibility is designed to give those students who wish to gain depth in a thematic area the opportunity to do so.

Courses in this group may not be taken Pass/Fail, and C- or better grades are required of all these courses.

5.6.1 Approved ECE/CS Electives for Computer Engineering Majors
The following ECE/CS courses are approved as ECE/CS electives for CE Majors:
• **ENGIN 331** Fields & Waves (3 credits)
• **ENGIN 332** Fields & Waves II (3 credits)
• **ENGIN 351** Fundamentals of Semiconductor Devices (3 credits)
• **ENGIN 451** Semiconductor Device Design, Simulation and Fabrication (3 credits)
• **ENGIN 366** Electronics II with Lab (4 credits)
• **ENGIN 471** R/F Microwave Circuits (3 credits)
• **ENGIN 435** Antenna Design (3 credits)
• **ENGIN 441** Embedded Systems (3 credits)
• **CS 420** Introduction to the Theory of Computation (3 credits)
• **CS 438** Applied Machine Learning (3 credits)
• **CS 444** Introduction to Operating Systems (3 credits)
• **CS 445** Real-Time Systems (3 credits)
• **CS 446** Introduction to Internetworking (3 credits)
• **CS 451** Compilers (3 credits)
• **CS 470** Introduction to Artificial Intelligence (3 credits)
• **ENGIN 478** Independent Study
• **ENGIN 480** Special Topics

6. Academic and Professional Ethics
Students at the University of Massachusetts Boston are expected to uphold high ethical standards (http://www.umb.edu/life_on_campus/policies/code). Students are obliged to refrain from acts, which they know, or under the circumstances have reason to know, would violate the academic integrity of the University. Violations of academic ethics include, but are not limited to: cheating, plagiarism, submitting the same or substantially similar work to satisfy the requirements of more than one course without permission; submitting as one's own the same or substantially similar work of another; knowingly furnishing false information to any agent of the University for inclusion in academic records; falsification, forgery, alteration, destruction or misuse of official University documents or seal.

Students should also be aware that professional societies, industries, and government agencies all have ethical codes and standards to ensure both good business practices and to maintain the public trust. The Institute of Electrical and Electronics Engineers (IEEE) represents the profession of Electrical Engineering, and students should read that organization's code of ethics published on the web site: http://www.ieee.org/web/aboutus/ethics/code.html.

7. Sample Programs
The following tables show two sample B. S. degree programs, one fulfilling the requirements in Electrical Engineering and another for Computer Engineering. These programs are for
illustrative purposes only. All students are expected to plan, in consultation with their faculty advisors, programs best suited to their own situations and interests.
University of Massachusetts Boston
Electrical Engineering (EE) Curriculum
(Revised February, 2016)

Freshman Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th></th>
<th>Spring Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro-D 187S Freshman seminar I</td>
<td>2</td>
<td>Intro-D 188S Freshman seminar II</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 101 Freshman English I</td>
<td>3</td>
<td>ENGL 102 Freshman English II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140 Calculus I</td>
<td>4</td>
<td>MATH 141 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>ENGIN 104 Intro to ECE</td>
<td>3</td>
<td>PHYSIC 113 Fundamental Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Gen Ed</td>
<td>3</td>
<td>PHYSIC 181 Physics Lab II</td>
<td>2</td>
</tr>
<tr>
<td>Total: 15CH</td>
<td></td>
<td>Total: 15CH</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th></th>
<th>Spring Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGIN 231 Circuit Analysis I</td>
<td>3</td>
<td>ENGIN 232 Circuit Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>ENGIN 271 Circuits lab I</td>
<td>1</td>
<td>ENGIN 272 Basics Circuit lab II</td>
<td>1</td>
</tr>
<tr>
<td>ENGIN 211 Engineering Math</td>
<td>3</td>
<td>ENGIN 241 Digital Systems with Lab</td>
<td>4</td>
</tr>
<tr>
<td>MATH 242 Multivariable & Vector Cal</td>
<td>4</td>
<td>MATH 260Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>PHYSIC 114 Fundamental Physics II</td>
<td>4</td>
<td>CS 109 C Programming for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>PHYSIC 182 Physics Lab II</td>
<td>2</td>
<td>Intermediate Seminar</td>
<td>3</td>
</tr>
<tr>
<td>Total: 17CH</td>
<td></td>
<td>Total: 17CH</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th></th>
<th>Spring Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGIN 365 Electronics I with Lab</td>
<td>4</td>
<td>ENGIN 366 Electronics II with Lab</td>
<td>4</td>
</tr>
<tr>
<td>ENGIN 321 Signals and Systems</td>
<td>3</td>
<td>ENGIN 322 Probability & Random Proc.</td>
<td>3</td>
</tr>
<tr>
<td>ENGIN 331 Fields and Waves</td>
<td>3</td>
<td>ECE Elective (1)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 310 Diff. Equations</td>
<td>3</td>
<td>Thematic Elective (1)</td>
<td>3</td>
</tr>
<tr>
<td>Gen Ed</td>
<td>3</td>
<td>Gen Ed</td>
<td>3</td>
</tr>
<tr>
<td>Total: 16CH</td>
<td></td>
<td>Total: 16CH</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th></th>
<th>Spring Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGIN 491 Senior Design Project I</td>
<td>3</td>
<td>ENGIN 492 Senior Design Project II</td>
<td>3</td>
</tr>
<tr>
<td>ECE Elective (2)</td>
<td>3</td>
<td>ECE Elective (4)</td>
<td>3</td>
</tr>
<tr>
<td>ECE Elective (3)</td>
<td>3</td>
<td>ECE Elect. (5) or Thematic Elect. (3)</td>
<td>3</td>
</tr>
<tr>
<td>Thematic Elective (2)</td>
<td>3</td>
<td>ECE Elect. (6) or Thematic Elect. (4)</td>
<td>3</td>
</tr>
<tr>
<td>Gen Ed</td>
<td>3</td>
<td>Gen Ed</td>
<td>3</td>
</tr>
<tr>
<td>Total: 15CH</td>
<td></td>
<td>Total: 15CH</td>
<td></td>
</tr>
</tbody>
</table>

Total Degree: 126CH
University of Massachusetts Boston
Computer Engineering (CE) Curriculum
(Revised February, 2016)

Freshman Year

Fall Semester
- Intro-D 187S Freshman seminar I 2
- ENGIN 104 Intro to ECE 3
- ENGL 101 Freshman English I 3
- MATH 140 Calculus I 4
- **CS 110 Intro to Computing** 4

Spring Semester
- Intro-D 188S Freshman seminar II 2
- **ENGL 102 Freshman English II** 3
- **MATH 141 Calculus II** 4
- **PHY 113 Fundamental Physics I** 4
- **PHY 181 Physics Lab I** 2

Total: 16CH

Sophomore Year

Fall Semester
- ENGIN 211 Engineering Math 3
- ENGIN 231 Circuit Analysis I 3
- **ENGIN 271 Circuits Lab I** 1
- **MATH 242 Multivariable & Vector Cal** 4
- **PHY 114 Fundamental Physics II** 4
- **PHY 182 Physics Lab II** 2

Spring Semester
- ENGIN 232 Circuit Analysis II 3
- ENGIN 272 Basics Circuit Lab II 1
- **ENGIN 241 Digital Systems with Lab** 4
- **CS 210 Interim. Comp. w/ Data Str.** 4
- **Intermediate Seminar** 3

Total: 15CH

Junior Year

Fall Semester
- ENGIN 321 Signals and Systems 3
- **ENGIN 341 Advanced Digital Design** 3
- **ENGIN 365 Electronics I with Lab** 4
- **MATH 260 Linear Algebra** 3
- **CS 240 Programming in C** 3

Spring Semester
- **ENGIN 322 Prob. & Random Proc.** 3
- **ENGIN 346 Microcontrollers** 3
- **CS 310 Advanced Data Str. & Alg.** 3
- **MATH 320L Applied Discrete Math** 3
- Gen Ed 3
- Gen Ed 3

Total: 17CH

Senior Year

Fall Semester
- **ENGIN 491 Senior Design Project I** 3
- **ENGIN 446 Comp. Architecture Design** 3
- Thematic Elective (1) 3
- Thematic Elective (2) 3
- Gen Ed 3

Spring Semester
- **ENGIN 492 Senior Design Project II** 3
- **ECE/CS Elect. (1) or Thematic Elect. (3)** 3
- **ECE/CS Elect. (2) or Thematic Elect. (4)** 3
- Gen Ed 3
- Gen Ed 3

Total: 16CH

Total Degree: 127CH